猜中二個心數
以bc表示二位數10b+c。 假設133a的末兩位數bc,即
133a≡bc (mod 100),所以 bc
×3≡133a×3(mod 100)。
假設167a的末兩位數bc,即 167a≡bc
(mod 100),所以
bc
×3≡167a×3(mod 100)。 因為167a×3(mod 100)=500a+a(mod 100)≡a(mod 100),所以
bc ×3≡a(mod 100)。
Copyright ©
昌爸工作坊
all rights reserved.
(1)、從51~99(含兩端)選一個整數a。
(2)、N是133或167。
因為133a×3(mod 100)=400a-a(mod 100)≡-a(mod 100)=100-a(mod 100),所以
bc ×3≡100-a(mod 100)
已知50<a<100,因此 0<100-a<50。
由上述得知,如果將輸入的兩位數bc乘以3,再除以100得餘數,餘數介於0~50之間(不含兩端),則100減去餘數就得a值,而且N=133。
也就是說,如果將輸入的兩位數bc乘以3,再除以100得餘數,餘數介於50~100之間(不含兩端),那麼餘數就是a值,而且N=167。